Exam F (Part I)

Name
Please Note: Present you solutions in a well organized, legible way. Calculators may be used only in elementary computational mode and trig mode, and not in calculus mode (even for exploratory purposes).

PART A. Each of the five multiple choice problems is worth 8 points. Be sure to enter your answers on the second page of the test.

1. The value of $\lim _{\Delta x \rightarrow 0} \frac{\cos \left(\frac{\pi}{6}+\Delta x\right)-\cos \frac{\pi}{6}}{\Delta x}$ is
a. $\cos \left(\frac{\pi}{6}\right)$
b. $-\frac{1}{2}$
c. this $\frac{0}{0}$ limit does not exist
d. $\frac{1}{2}$
e. $\frac{\sqrt{2}}{2}$
2. Consider the long sum

$$
(1)^{2} \cdot \frac{1}{1000}+\left(1+\frac{1}{1000}\right)^{2} \cdot \frac{1}{1000}+\left(1+\frac{2}{1000}\right)^{2} \cdot \frac{1}{1000}+\left(1+\frac{3}{1000}\right)^{2} \cdot \frac{1}{1000}+\cdots+\left(1+\frac{999}{1000}\right)^{2} \cdot \frac{1}{1000} .
$$

Determine a function $y=f(x)$ such that this long sum is very nearly equal to $\int_{1}^{2} f(x) d x$. The approximate value of the long sum is:
a. 1
b. $\frac{1}{5}$
c. $\frac{11}{5}$
d. $\frac{5}{3}$
e. $\frac{7}{3}$.
3. Use logarithmic differentiation to find the derivative of $f(x)=x^{x}$ for $x>0$. The value $f^{\prime}(e)$ is equal to
a. $e\left(e^{e-1}\right)$
b. $2 e^{e}$
c. e^{-e}
d. e
e. $f(x)$ is not differentiable at $x=e$.
4. You are given a differentiable function $y=f(x)$. What is known about its graph is captured in the diagram below. Conclude from the information provided that the derivative of $y=f^{-1}(x)$

evaluated at $x=-2$ is:
a. $-\frac{3}{4}$
b. $-\frac{4}{3}$
c. $-\frac{1}{5}$
d. $-\frac{5}{4}$
e. f^{-1} may not be differentiable at $x=-2$.
5. Find a function $y=f(x)$ that satisfies $\frac{d y}{d x}=6 x^{2}\left(x^{3}+1\right)^{\frac{1}{2}}$ and $f(-1)=0$. Then
a. $f(0)=\frac{1}{3}$
b. $f(0)=1$
c. $f(0)=\frac{8}{3}$
d. $f(0)=\frac{4}{3}$
e. $f(0)=-\frac{7}{3}$.

Please enter your Answers for PART A.

1. \qquad 2. \qquad 3. \qquad 4. \qquad 5. \qquad

PART B.

1. Consider the function $f(x)=x\left(3 x^{2}-15 x\right)^{\frac{1}{3}}$.
i. Verify (show all steps) that $f^{\prime}(x)=\frac{5 x^{2}-20 x}{\left(3 x^{2}-15 x\right)^{\frac{2}{3}}}$.
ii. (5 pts) Locate all the critical numbers for $y=f(x)$ on the number line below.

iii. Determine the interval(s) over which f is increasing and those over which f is decreasing, as well as the local maxima and minima of f.
2. Show that the surface area of the region obtained by rotating the graph of $f(x)=x^{3}$ one revolution around the x-axis is 64π square units.
3. Consider the differential equation $(1+x) y^{\prime}+y=\sqrt{x}$.

This equation fits the integrating factor format with $p(x)=\square$ and $q(x)=\longrightarrow$.

The integrating factor is $e^{P(x)}=$ \qquad .

Find a solution $y=f(x)$ of the differential equation that satisfies the condition $f(0)=-7$.

Formulas and Facts:

$$
\begin{aligned}
& F=m a \quad \kappa=\frac{A_{t}}{t} \quad c^{2}=a^{2}-b^{2} \quad c=\varepsilon a \quad \kappa=\frac{a b \pi}{T} \\
& F_{P}=C_{P} m \frac{1}{r^{2}} \quad G=6.67 \times 10^{-11} \text { in M.K.S. } \quad F=G \frac{m M}{r^{2}} \quad F=\frac{8 \kappa^{2} m}{L} \frac{1}{r_{P}^{2}} \quad \frac{a^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}} . \\
& \frac{d}{d x} a^{x}=\ln a \cdot a^{x} \quad \log _{a} x=\frac{1}{\ln a} \cdot \ln x \\
& \frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \quad \sin \frac{\pi}{6}=\frac{1}{2} \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \quad \cos \frac{\pi}{3}=\frac{1}{2} \\
& \frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{x^{2}+1} \\
& \pi \int_{a}^{b} f(x)^{2} d x \quad \int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \quad 2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
\end{aligned}
$$

